
Working with NumPy
As per CBSE curriculum

Class 12

By-
Neha Tyagi
PGT (CS)
KV 5 Jaipur(II Shift)
Jaipur Region

Chapter- 01

NumPy Arrays

Neha Tyagi, KV5 Jaipur II shift

• Before proceeding towards Pandas’ data structure, let us have a brief

review of NumPy arrays because-

1. Pandas’ some functions return result in form of NumPy array.

2. It will give you a jumpstart with data structure.

• NumPy (“Numerical Python” or Numeric Python”) is an open source

module of Python that provides functions for fast mathematical

computation on arrays and matrices.

• To use NumPy, it is needed to import. Syntax for that is-

 >>>import numpy as np

 (here np, is an alias for numpy which is optional)

• NumPy arrays come in two forms-

• 1-D array – also known as Vectors.

• Multidimentional arrays –

 Also known as Matrices.

See the
difference
between List
and array

NumPy Arrays Vs Python Lists

Neha Tyagi, KV5 Jaipur II shift

• Although NumPy array also holds elements like Python List ,

yet Numpy arrays are different data structures from Python

list. The key differences are-

• Once a NumPy array is created, you cannot change its size.

you will have to create a new array or overwrite the existing

one.

• NumPy array contain elements of homogenous type, unlike

python lists.

• An equivalent NumPy array occupies much less space than a

Python list.

• NumPy array supports Vectorized operation, i.e. you need to

perform any function on every item one by one which is not in

list.
In list, it will generate error
but will be executed in
arrays.

NumPy Data Types

Neha Tyagi, KV5 Jaipur II shift

NumPy supports following data types-

Ways to Create NumPy Arrays

Neha Tyagi, KV5 Jaipur II shift

1. array() function can be used to create array-

numpy.array(<arrayconvertible object>,[<datatype>])

*Assuming NumPy has been imported as np.

Above statement will do the following things-

• nar1 will be created as an ndarray object.

• nar1 will have 3 elements (as passed in the list).

• A datatype will be assigned by default to the elements of the ndarray. You can

specify own datatype using dtype argument.

• Itemsize will be as per the datatype of the elements.

Creating array by specifying own datatype-

To check type, dtype and size-

2. Creating ndarray using fromiter()-
The fromiter() function is useful when you want to create an ndarray from a
non-numeric sequence.

numpy. fromiter (<iterable sequence name>,<target data type>,[<count>])

Ways to Create NumPy Arrays

Ways to Create NumPy Arrays

Neha Tyagi, KV5 Jaipur II shift

3. arange() function is used to create array from a range.

 <arrayname> = numpy.arange([start],stop,[step],[dtype])

Here, only stop value is
passed.

Here, from 1-7 at the step of
2.

4. linspace() function can be used to prepare array of range.

 <arrayname> = numpy.linspace([start],stop,[dtype])

Here, an array of 6 values is created between
the values 2 and 3.

Here, an array of 8 values is created between the values 2.5 and 8.

2D NumPy Arrays

Neha Tyagi, KV5 Jaipur II shift

With the help
of list, 2D array
is created.

Accessing Array

elemets with

index

Printing of Array

To see type of

Array

To see shape of

Array (use of

different functions)

NumPy arrays arr also known as ndarray (n-dimentional array)

2. Creating 2D ndarrays using arange()-

In the similar manner as we have created 1D ndarrays with arange() function, we

can also create 2D ndarrays with arange() function along with reshape().

<ndarray>.reshape(<shape tuple>)

3. ARRAYS CREATION ALTERNATIVE METHODS-
a. Using empty()-
empty() function can be used to create empty array or an

unintialized array of specified shape and dtype.

Where:dtype: is a data type of python or numpy to set initial values.

Shape: is dimension.

Order : ‘C’ means arrangement of data as row wise(C means C like).

Order : ‘F’ means arrangement of data as row wise (F means Fortran

like)

numpy.empty(Shape,[dtype=<datatype>,] [order = ‘C’ or ‘F’]

b. Using zeros()-

numpy.zeros (Shape,[dtype=<datatype>,] [order = ‘C’ or ‘F’])

c. Using ones()-

numpy.ones(Shape,[dtype=<datatype>,] [order = ‘C’ or ‘F’])

Array Slicing-
it is possible to extract subsets of NumPy arrays using slices, just like lists.

• When <start><stop> or<step> values are not specified then
Python will assume their default values as:

 Start=0; Stop=dimension size ;Step=1

<Arrayname>[<start>:<stop>:<step>]

Joining or Concatenating Numpy Arrays-
For joining or concatenating of two or more existing ndarrays,
python provides following functions-
1. hstack() and vstack()
2. concatenate()
Combining existing arrays horizontally or vertically-

If you have two 1D arrays as-

Now, you may want to create a 2D array by stacking these two 1D arrays-

Horizontally as-

Or vertically as-

You can use the functions hstack() or vstack for this purpose.

1 4 9 3 6 5 7 2

1 4 9 3 6 5 7 2

1 4 9 3

6 5 7 2

Syntax-

Numpy.hstack(<tuple containing names of 1D arrays to be stacked>)

Numpy.vstack(<tuple containing names of 1D arrays to be stacked>)

Similar operations can be applied on 2D arrays.

COMBINING EXISTING ARRAYS USING CONCATENATE()-
Using this function you can concatenate or join NumPy arrays along
axis 0(rows) or axis 1(column).

Where-

-Axis argument specifies the axis along which arrays are to be joined. If

skipped, axisis assumed as 0 (i.e. along the rows).

The arrays being joined must have the same shape except in the

dimension corresponding to argument axis. i.e.-

• If axis is 0, then the shape of the arrays being joined must match on

column dimension.

• If axis is 1, then the shape of the arrays being joined must match on

rows dimension.

numpy.concatenate((<tuple of arrays to be joined>),[axis=<n>])

Consider the above mentioned arrays-

a1 with the shape (3,3).
a2 with the shape(2,3)
a3 with the shape(3,2)
a4 with the shape(3,1)

OBTAINING SUBSETS OF ARRAYS-
Subsets van be contiguous as well as non-contiguous.

a. Splitting NumPy Arrays to get contiguous Subsets
NumPy provides some functions namely split(), hpslit(), vsplit() to get the subset
from an numpy array. Syntax are-

Where-
<array> is the NumPy arrayand <n> is the number of sections/subsets in which
the array is to be divided.
The <n> must be chosen so that it results in equal division of <array>, otherwise
an array will be raised.

numpy.hsplit(<array>,<n>)

numpy.vsplit(<array>,<n>)

b. Using the split() function-

• <array> is the Numpy array to split.
• If 2nd arugument is <n>, then <array> is divided in <n> equal subarrays as per axis

argument.
• With 2nd argument as <n>, for axis=0, it behaves as vsplit() and for axis=1, it behaves

as hsplit().
• If 2nd argument is given as 1D array then <array> is split in unequal subarrays.
• The axis argument is optional and if skipped, it takes the value 0 i.e. on horizontal

axis. For axis=1, the split happens on vertical axis.

numpy.split(<array>,<n>|<1D array>, [axis=0])

The given argument 2,6 has divided the array into 3 slices i.e. 0:2, 2:6 and 6:

0:2, 2:6, 6:

divided as 0:1, 1:4,,,4: horizontally
(axis=0 because skipped)

divided as 0:2, 2:5,
5: vertically (axis=1)

Extracting condition based Non-Contiguous Subsets
This is done with the help of extracr() as per the syntax-

The extract() always returns the elements of given ndarray that fulfills the criteria of
<condition> in 1D ndarray form.
Framing Condition-
To find the subset of a 2D ndarray which is fully divisible by then, then you must write-

 condition=no.mod(ary,5)==0

numpy.extract (<condition>,<array>)

Arithmetic operations on 2D arrays-
a. Using operators-

<ndarray1>+<n>|<ndarray2>
<ndarray1>-<n>|<ndarray2>
<ndarray1>*<n>|<ndarray2>
<ndarray1>/<n>|<ndarray2>
<ndarray1>%<n>|<ndarray2>

b. Using NumPy Functions-

Numpy.add(<ndarray1>,<n>|<ndarray2>)
Numpy.subtract(<ndarray1>,<n>|<ndarray2>)
Numpy.multiply(<ndarray1>,<n>|<ndarray2>)
Numpy.divide(<ndarray1>,<n>|<ndarray2>)
Numpy.mod(<ndarray1>,<n>|<ndarray2>)

Numpy.remainder(<ndarray1>,<n>|<ndarray2>)

Applications on NumPy Arrays-
1. Covariance- The intuitive idea behind covariance is that it tells how

similar varying two datasets are. A high positive covariance between 2
datasets means they are very strongly Similar. Similarly, a high negative
covariance between 2 datasets means they are very dissimilar.

numpy.co(<arr1>m<arr2>)

The output is a 2X2 matrix, which is generated as-
Check[0][0]=var(a)
Check[0][1]=covariance(a,b)
Check[1][0]=covariance(b,a)=covariance(a,b)
Check[1][1]=var(b)

Negative values indicates
that they are not very

similar

2. Correlation- Correlation is basically normalized covariance. It gives two

values: 1 if the data sets have positive covariance and -1 if the datasets have
negative covariance.

np.corrcoef(<array1>, <array2>)

Thank you

Please follow us on our blog

Neha Tyagi, KV 5 Jaipur II Shift

www.pythontrends.wordpress.com

http://www.pythontrends.wordpress.com/

