
Introducing Python Pandas

Based on CBSE Curriculum

Class -11

Chapter-10

By-Neha Tyagi PGT CS KV 5 Jaipur II Shift Jaipur Region

Neha Tyagi, KV 5 Jaipur II Shift

Introduction

- Pandas or Python Pandas is a library of Python which is used for data analysis.
- The term Pandas is derived from "Panel data system", which is an ecometric term for multidimentioal, structured data set ecometrics.
- Now a days, Pandas has become a popular option for Data Analysis.
- Pandas provides various tools for data analysis in simpler form.
- Pandas is an Open Source, BSD library built for Python Programming language.
- Pandas offers high performance, easy to use data structure and data analysis tools.
- The main author of Pandas is Wes McKinney.
- In this chapter, we will learn about Pandas.

Neha Tyagi, KV5 Jaipur II shift

Installing Pandas

 "pip" command is used to install Pandas. For this, open the location of pip storage in command prompt (cmd). Goto the location in windows where pip file is stored.look at the following screen-

F avorites	Name	Date modified	Туре	Size		
🔜 Desktop	퉬pycache	10/18/2018 9:44 PM	File folder		View	,
🐌 Downloads	🙋 easy_install	6/24/2018 10:40 PM	Application	96 KB	Sort by	,
📃 Recent places	ᢙ easy_install-3.6	6/24/2018 10:40 PM	Application	96 KB	Group by	,
	📄 f2py	10/18/2018 9:44 PM	Python File	1 KB	Refresh	
Homegroup	🕞 get-pip	10/18/2018 9:39 PM	Python File	1,623 KB	Customize this folder	
	🔁 pip	10/18/2018 9:42 PM	Application	101 KB	Customize this folder	
This PC	🔁 рір3.6	10/18/2018 9:42 PM	Application	101 KB	Paste	
膧 Desktop	🔁 рір3	10/18/2018 9:42 PM	Application	101 KB	Paste shortcut	
Documents	ᢙ wheel	10/18/2018 9:42 PM	Application	101 KB	Undo Copy	Ctrl+Z
🗼 Downloads					Open command window h	ere
Music						
					Share with	
Pictures	In Windows, af	ter reaching at	the loc	ation, on		
 Pictures Videos 					Share with New	
Pictures	In Windows, af right click with					
 Pictures Videos 	right click with	shift you will	get th	e option	New	
Pictures Videos Local Disk (C:)		shift you will	get th	e option	New	
Pictures Videos Local Disk (C:) BDEDrive (D:)	right click with	shift you will nd Window He	get th re". On	e option clicking,	New	

Installing Pandas

Command window will look like-

C:4.

C:4.

C:\Windows\system32\cmd.exe

C:\Users\KVBBKServer\AppData\Loca1\Programs\Python\Python36\Scripts}_

Run the command- "pip install pandas"

pip install pandas

C:\Users\KVBBKServer\AppData\Local\Programs\Python\Python36\Scripts>pip install pandas

The following screen comes after and Pandas will be successfully installed.

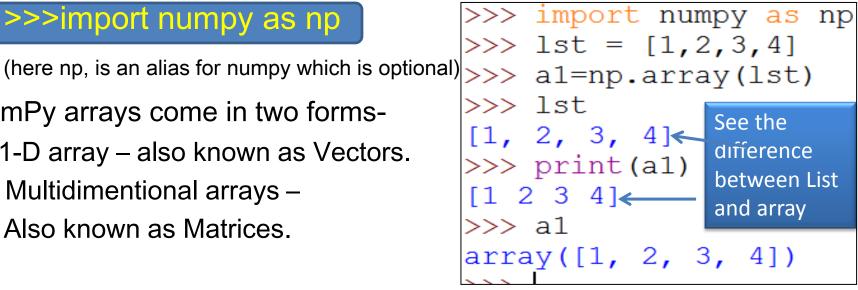
CA.	C:\Windows\syster	n32\cmd.exe	-		×
'pip' is not recognize operable program or ba		kternal command,			
C:\Users\KVBBKServer\A	ppData\Local\Programs`	Python\Python36>cd scripts			
pandas Collecting pandas Downloading https:// 48889ec523c0903c5efab1 <7.7MB> 100% : Collecting numpy>=1.9. Downloading https://	files.pythonhosted.org a64c8dbeØac8eec13c/par Ø (from pandas) files.pythonhosted.org	Python\Python36\Scripts>pi g/packages/0e/67/def5bfaf4d das-0.23.4-cp36-cp36m-win_ 7.7MB 150kB/s g/packages/15/7b/162a54ef18 mpy-1.15.2-cp36-none-win_am	- 3324 amd6 27fa	fdb89 4.whl	0
3.5MB> 100% 100% Downloading https:// 112b669c45c8c97e32f94a wh1 <211kB> 100% Collecting pytz>=2011k Downloading https:// 77a0842ed90dc789ce5d1e 100% 100% Collecting six>=1.5 (f Downloading https:// 78ac9d43d8ad29a7ca43ea	til>=2.5.0 (from pand files.pythonhosted.org a8b56da4c6d1682825/py (from pandas) files.pythonhosted.org d740887653b898779a/py rom python-dateutil>=2 files.pythonhosted.org 90a2d863fe3056e86a/si	13.5MB 284kB/s las> g/packages/cf/f5/af2b09c957 thon_dateutil-2.7.3-py2.py3 215kB 409kB/s g/packages/30/4e/27c34b6243 tz-2018.5-py2.py3-none-any. 512kB 595kB/s 2.5.0->pandas> g/packages/67/4b/141a581104 x-1.11.0-py2.py3-none-any.w	ace6 -non 0286 whl b1f6 hl	Ødcfa e-any c6d59 <510k 397bf	ic /- /1 (B
8.5 six-1.11.0		oython-dateutil, pytz, pand 2.23.4 python-dateutil-2.7. Python\Python36\Scripts>	as 3 py	tz-20	11

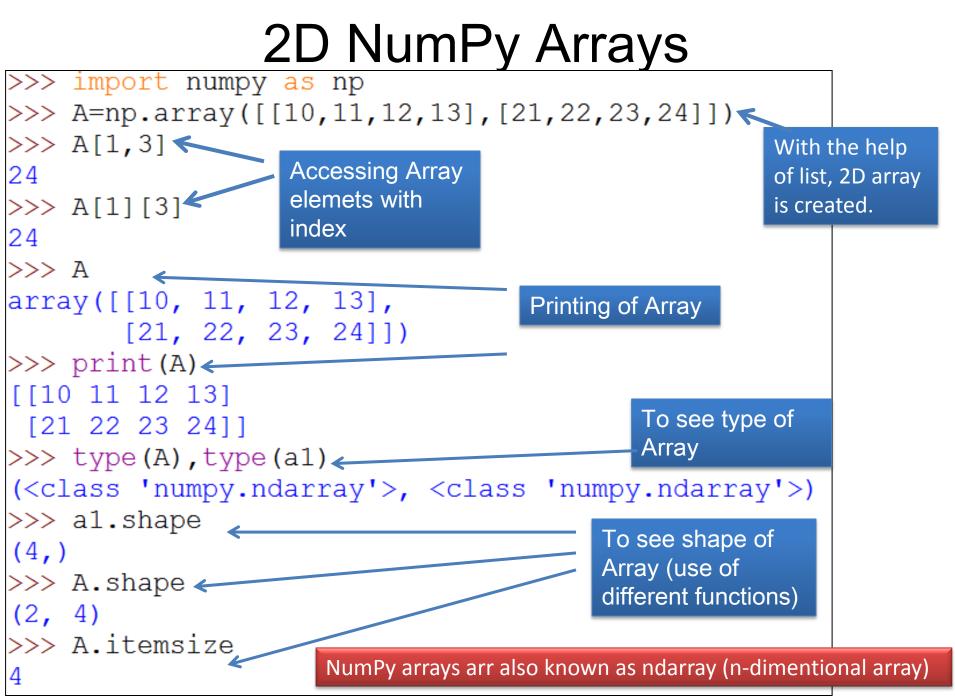
Using Pandas

• Before proceeding, we need to first import the Pandas.

```
>>> import pandas
>>> help(pandas)
                               Help(pandas) command will give you all information
Help on package pandas:
                               about Pandas module.
NAME
    pandas
DESCRIPTION
    pandas - a powerful data analysis and manipulation library for Python
    **pandas** is a Python package providing fast, flexible, and expressive data
    structures designed to make working with "relational" or "labeled" data both
    easy and intuitive. It aims to be the fundamental high-level building block
for
    doing practical, **real world** data analysis in Python. Additionally, it ha
S
    the broader goal of becoming **the most powerful and flexible open source da
ta
    analysis / manipulation tool available in any language**. It is already well
 on
    its way toward this goal.
```

Features of Pandas

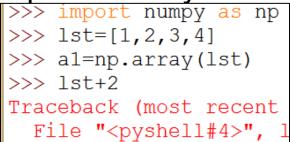

- Pandas, is the most popular library in Scientific Python ecosystem for doing data analysis. Pandas is capable of many taska including-
- It can read or write in many different data formats(Integer, float, double etc).
- 2. It can calculate in all ways data is organized.
- 3. It can easily select subsets of data from bulky data sets ab=nd even combine multiple datasets together.
- 4. It has functionality to find anfd fill missing data.
- 5. It allows you to apply operations to independent groups within the data.
- 6. It supports reshaping of data into different forms.
- 7. It supports advanced time-series functionality(which is the use of a model to predict future values based on previously observed values).
- 8. It supports visualization by integrating matplotlib and seaborn etc libraries. Pandas is best at handling huge tabular data sets comprising different data formats.


NumPy Arrays

- Before proceeding towards Pandas' data structure, let us have a brief review of NumPy arrays because-
 - Pandas' some functions return result in form of NumPy array. 1
 - It will give you a jumpstart with data structure. 2
- NumPy ("Numerical Python" or Numeric Python") is an open source module of Python that provides functions for fast mathematical computation on arrays and matrices.
- To use NumPy, it is needed to import. Syntax for that is-

>>>import numpy as np

- NumPy arrays come in two forms-
 - 1-D array also known as Vectors.
 - Multidimentional arrays Also known as Matrices.



Neha Tyagi, KV5 Jaipur II shift

NumPy Arrays Vs Python Lists

- Although NumPy array also holds elements like Python List, yet Numpy arrays are different data structures from Python list. The key differences are-
- Once a NumPy array is created, you cannot change its size. you will have to create a new array or overwrite the existing one.
- NumPy array contain elements of homogenous type, unlike python lists.
- An equivalent NumPy array occupies much less space than a Python list.
- NumPy array supports Vectorized operation, i.e. you need to perform any function on every item one by one which is not in

In list, it will generate error but will be executed in arrays.

Neha Tyagi, KV5 Jaipur II shift

>>> a1+2 array([3, 4, 5, 6])

NumPy Data Types

NumPy supports following data types-

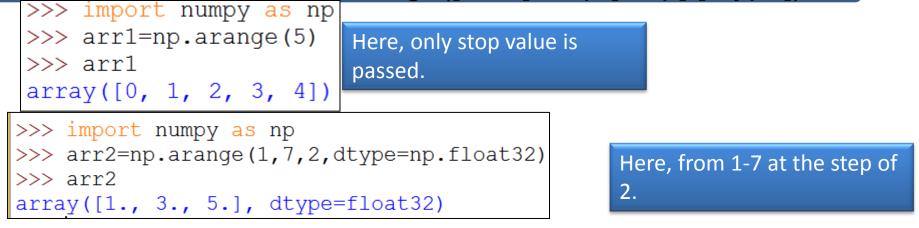
.No.	Data Type	Description	Size		
1.	bool_	Boolean data type (stores True or False)		1 byte	
2.	int_	Default type to store integers in <i>int</i> 32 or <i>int</i> 64		4 or 8 bytes	
3.	int8	Stores signed integers in range -128 to 127		1 byte	
4.	int16	Stores signed integers in range -32768 to 32767		2 bytes	
5.	int32	Stores signed integers in range -2^{16} to 2^{16} -1		4 bytes	
6.	int64	Stores signed integers in range -2^{32} to $2^{32} - 1$		8 bytes	
7.	uint8	Stores unsigned integers in range 0 to 255		1 byte	
8.	uint16	Stores integers in range 0 to $2^{16} - 1$		2 bytes	
9.	uint32	Stores integers in range 0 to $2^{32} - 1$		4 bytes	
10.	uint64	Stores integers in range 0 to $2^{64} - 1$		8 bytes	
11.	float_	Default type to store floating point (float64)		8 bytes	
12.	float16	t16 Stores half precision floating point values (5 bits exponent, 10 bit mantissa)		2 bytes	
.3.	float32	Stores single precision floating point values (8 hits exponent, 23 bit mantissa)		4 bytes	
14.	float64	Stores double precision floating point values (11 bits exponent, 52 bit mantissa)	8 byte	S	
15.	complex_	Default type to store complex numbers (complex128)	16 byt	16 bytes	
16.	complex64	1 0 hute		es	
17.	a set show for real 16 by		16 byt	ytes	
18.	string_	Fixed-length string type.		per character	
19.	unicode_	Fixed-length Unicode type.		er of bytes rm specific	

Neha Tyagi, KV5 Jaipur II shift

Ways to Create NumPy Arrays

 empty() function can be used to create empty array or an unintialized array of specified shape and dtype.

numpy.empty(Shape,[dtype=<datatype>,] [order = 'C' or 'F']


- Where: dtype: is a data type of python or numpy to set initial values.
- Shape: is dimension.
- Order : 'C' means arrangement of data as row wise(C means C like).
- Order : 'F' means arrangement of data as row wise (F means Fortran like)

```
>>> arr2=np.empty([3,2])
>>> arr2
array([[6.23042070e-307, 4.67296746e-307],
       [1.69121096e-306, 2.00271247e-307],
       [9.34587382e-307, 1.60219035e-306]])
Here, array is of all garbage
values and of default type
"float"
```

Ways to Create NumPy Arrays

1. arange() function is used to create array from a range.

<arrayname> = numpy.arange([start],stop,[step],[dtype])

2. linspace() function can be used to prepare array of range.

<pre><arrayname> = numpy.linspace([start],stop,[dtype])</arrayname></pre>						
<pre>>>> import numpy as np >>> arr3 = np.linspace(2,3,6) >>> arr3</pre> Here, an array of 6 values is created between the values 2 and 3.						
array([2., 2.2, 2.4, 2.6, 2.8, >>> import numpy as np	3.])					
<pre>>>> arr4 = np.linspace(2.5,5,8) Here, an array of the state of th</pre>	of 8 values is created between the values 2.5 and 8.					
array([2.5 , 2.85714286, 3.21428571, 3. 4.28571429, 4.64285714, 5.])	57142857, 3.92857143,					

Neha Tyagi, KV5 Jaipur II shift

Pandas Data Structure

"A data structure is a particular way of storing and organizing data in a computer so that it can be accessed and worked with in appropriate ways. For ex-

- -If you want to store similar type of data items together and process them in identical way, array is the solution.
- If you want to store data in such a way so that you get access of the very last data item you inserted, stack is the solution.
- -If you want to store data in such a way so that data item inserted first get accessed first, Queue is the solution.
- there are many more other types of data structure suited for different types of functionality.
- Further, We will come to know about Series and DataFrame data structures of Python.

Series Data Structure

- Series is a data structure of pandas. It represents a 1D array of indexed data.
- It has two main components-
 - An array of actual data.
 - An associated array of indexes or data labels.
 - Both components are 1D arrays with the same length.

Index	Data	Index	Data	Index	Data
0	21	Jan	31	'A'	91
1	23	Feb	28	'B'	81
2	18	Mar	31	'C'	71
3	25	Apr	30	'D'	61

Examples of series type objects.

Creation of Series Objects

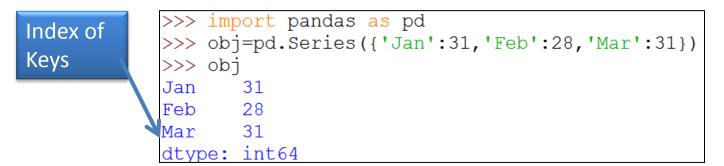
- There are many ways to create series type object.
- 1. Using Series ()-

<Series Object> = pandas.Series() it will create empty series.

```
>>> import pandas as pd
>>> ob = pd.Series()
>>> ob
Series([], dtype: float64)
```

2. Non-empty series creation-

```
Import pandas as pd
```


<Series Object> = pd.Series(data, index=idx) where data can be python sequence, ndarray, python dictionary or scaler value.

Neha Tyagi, KV5 Jaipur II shift

Series Objects creation

1. Creation of series with Dictionary-

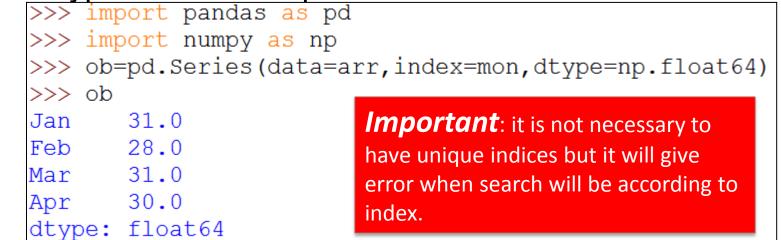
2. Creation of series with Scalar value-

>>> import pandas as pd	>>> import pandas as pd
<pre>>>> a=pd.Series(10,index=range(0,3))</pre>	>>> b=pd.Series(15,index=range(1,6,2))
>>> a	>>> b
0 10	1 15
1 10	3 15
2 10	5 15
dtype: int64	dtype: int64

```
>>> import pandas as pd
>>> c=pd.Series('Welcome to BBK', index=['Hema','Rahul','Anup'])
>>> c
Hema Welcome to BBK
Rahul Welcome to BBK
Anup Welcome to BBK
dtype: object
```

Creation of Series Objects –Additional functionality

1. When it is needed to create a series with missing values, this can be achieved by filling missing data with a NaN ("Not a Number") value.


```
>>> import pandas as pd
>>> import numpy as np
>>> ob=pd.Series([6.5,np.NaN,2.34])
>>> ob
0        6.50
1        NaN
2        2.34
dtype: float64
```

2. Index can also be given as-

```
>>> import pandas as pd
>>> s=pd.Series(range(1,15,3), index=[x for x in 'abcde'])
>>> s
a    1
b    4
c    7
d    10
e    13
dtype: int64
```

Creation of Series Objects –Additional functionality

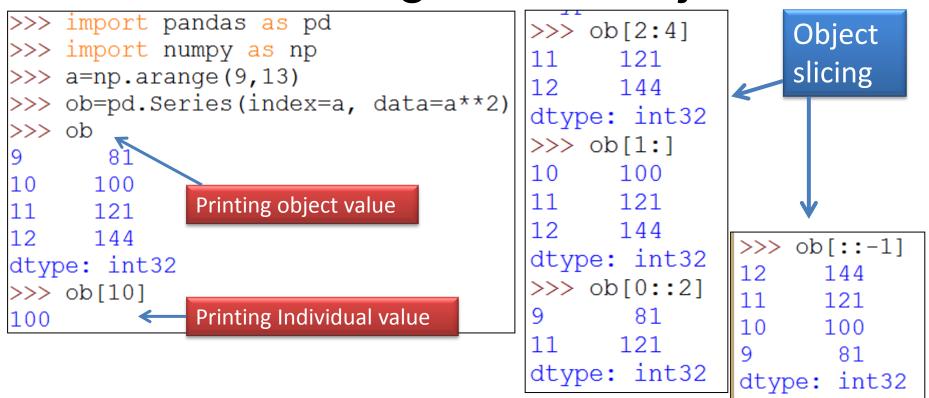
3. Dtype can also be passed with Data and index

4. Mathematical function/Expression can also be used-

>>> import pandas as pd	>>> import pandas as pd
>>> import numpy as np	>>> import numpy as np
>>> a=np.arange(9,13)	>>> a=np.arange(9,13)
>>> a array([9, 10, 11, 12])	>>> ob=pd.Series(index=a, data=a**2)
	>>> ob
>>> ob	9 81
9 18	10 100
10 20	11 121
11 22	12 144
12 24 dtype: int32	dtype: int32

Series Object Attributes

3. Some common attributes-

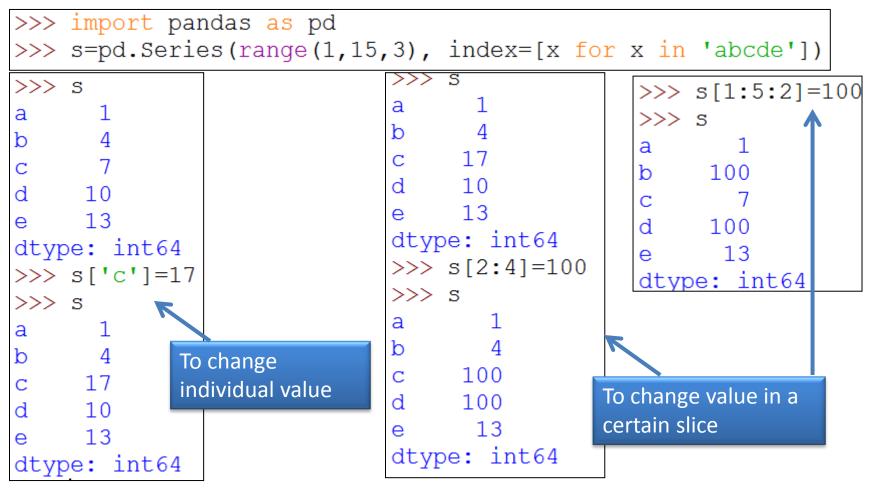

<series object>.<AttributeName>

Attribute	Description
Series.index	Returns index of the series
Series.values	Returns ndarray
Series.dtype	Returns dtype object of the underlying data
Series.shape	Returns tuple of the shape of underlying data
Series.nbytes	Return number of bytes of underlying data
Series.ndim	Returns the number of dimention
Series.size	Returns number of elements
Series.intemsize	Returns the size of the dtype
Series.hasnans	Returns true if there are any NaN
Series.empty	Returns true if series object is empty

Series Object Attributes

```
>>> import pandas as pd
>>> s=pd.Series(range(1,15,3), index=[x for x in 'abcde'])
>>> s.index
Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
>>> s.values
array([ 1, 4, 7, 10, 13], dtype=int64)
>>> s.shape
(5,)
>>> s.size
5
>>> s.nbytes
40
>>> s.ndim
1
>>> s.itemsize
```

Accessing Series Object

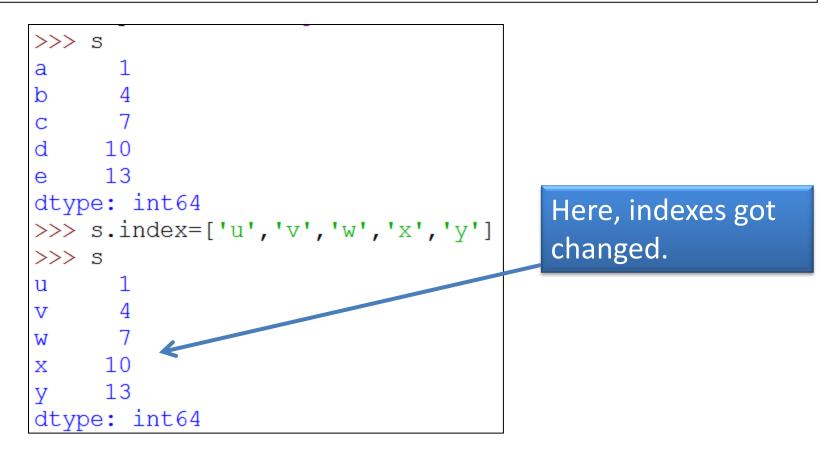

For Object slicing, follow the following syntax-

<objectName>[<start>:<stop>:<step >]

Operations on Series Object

1. Elements modification-

<series object>[index] = <new_data_value>


Operations on Series Object

1. It is possible to change indexes

<series object>.<index] = <new_index_array>

>>> import pandas as pd

>>> s=pd.Series(range(1,15,3), index=[x for x in 'abcde'])

head() and tail () Function

- head(<n>) function fetch first n rows from a pandas object. If you do not provide any value for n, will return first 5 rows.
- 2. tail(<n>) function fetch last n rows from a pandas object. If you do not provide any value for n, will return last 5 rows.

```
>>> import pandas as pd
>>> import math
>>> s=pd.Series(data=[math.sqrt(x) for x in range(1,10)],index=[x for x in range
(1,10)])
>>> s
1 1.000000
2 1.414214
3 1.732051>> s.head(6)
1 1.000000
2 1.414214
3 1.732051>> s.head(6)
1 1.000000
2 1.414214
3 1.732051>> s.head(6)
1 1.000000
2 1.414214
3 1.732051
```

L	1.000000	1 1.000000	3	1.732051	T	1.000000	
2	1.414214	2 1.414214	4	2.000000	2	1.414214	
3	1.732051	3 1.732051	5	2.236068	3	1.732051	
1	2.000000	4 2.000000	6	2.449490	4	2.000000	
5	2.236068	5 2.236068	7	2.645751	5	2.236068	
5	2.449490	6 2.449490	8	2.828427	dtyp	pe: float64	
7	2.645751	dtype: float64	9	3.000000	>>>	s.tail()	
3	2.828427		dtv	pe: float64	5	2.236068	
)	3.000000			1	6	2.449490	
lty	pe: float64				7	2.645751	
		_			8	2.828427	
					9	3.000000	
Neha Tyagi, KV5 Jainur II shift						pe: float64	

4 5


6

8

9

d

Series Objects -Vector Operations


Series Objects -Arithmetic Operations

>>> s >>> s		>> s3
		01 21
-	2 1	02 22
2 12 2 3 13 3		03 23
4 14 4	25	04 24
dtvpe: int64 dtype	21	type: int64
>>> s+s1	>>> s+	SJ
1 32	1	NaN
2 34	2	NaN
3 36		NaN
4 38		NaN
dtype: int64	_	
>>> s*s1	101	NaN
1 231	102	NaN
2 264	103	NaN
3 299	104	NaN
4 336		float64
dtype: int64	ucype.	1104004
>>> s/s1	Arithmeti	o oporation is
1 0.523810		ic operation is
2 0.545455	possible of	on objects of
3 0.565217	same ind	ex otherwise
	will result	
4 0.583333	wiii resuii	
dtype: float64		

We can also store these results in other objects.

Entries Filtering

<seriesObject> <series - boolean expression >

Difference between NumPy array Series objects

 In case of ndarray, vector operation is possible only when ndarray are of similar shape. Whereas in case of series object, it will be aligned only with matching index otherwise NaN will be returned.

```
>>> import numpy as np
>>> a=np.array([1,2,3])
>>> b=np.array([1,2,3,45,5])
>>> a+b
Traceback (most recent call last):
   File "<pyshell#143>", line 1, in <module>
        a+b
```

ValueError: operands could not be broadcast together with shapes (3,) (5,)

2. In ndarray, index always starts from 0 and always numeric. Whereas, in series, index can be of any type including number and not necessary to start from 0.

Thank you

Please follow us on our blog

www.pythontrends.wordpress.com